Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559135

RESUMO

A subgroup of castration-resistant prostate cancer (CRPC) aberrantly expresses a gastrointestinal (GI) transcriptome governed by two GI-lineage-restricted transcription factors, HNF1A and HNF4G. In this study, we found that expression of GI transcriptome in CRPC correlates with adverse clinical outcomes to androgen receptor signaling inhibitor treatment and shorter overall survival. Bromo- and extra-terminal domain inhibitors (BETi) downregulated HNF1A, HNF4G, and the GI transcriptome in multiple CRPC models, including cell lines, patient-derived organoids, and patient-derived xenografts, while AR and the androgen-dependent transcriptome were largely spared. Accordingly, BETi selectively inhibited growth of GI transcriptome-positive preclinical models of prostate cancer. Mechanistically, BETi inhibited BRD4 binding at enhancers globally, including both AR and HNF4G bound enhancers while gene expression was selectively perturbed. Restoration of HNF4G expression in the presence of BETi rescued target gene expression without rescuing BRD4 binding. This suggests that inhibition of master transcription factors expression underlies the selective transcriptional effects of BETi. SIGNIFICANCE: GI transcriptome expression in CRPC is regulated by the HNF1A-HNF4G-BRD4 axis and correlates with worse clinical outcomes. Accordingly, BET inhibitors significantly reduce tumor cell growth in multiple GI-transcriptome-positive preclinical models of CRPC. Our studies point that expression of GI transcriptome could serve as a predictive biomarker to BETi therapy response.

2.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585965

RESUMO

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 is highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression is associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibit neural lineage pathways, suppressing NEPC cell proliferation, PDX tumor organoid viability, and xenograft tumor growth. Mechanistically, the chaperone protein HSP70 regulates PLXND1 protein stability through degradation, and inhibition of HSP70 decreases PLXND1 expression and NEPC organoid growth. In summary, our findings suggest that PLXND1 could be a new therapeutic target and molecular indicator for NEPC.

3.
Prostate ; 84(7): 623-635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450798

RESUMO

BACKGROUND: There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS: In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS: An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS: There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Reprodutibilidade dos Testes , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Próstata/patologia , Organoides/patologia , Xenoenxertos , Microambiente Tumoral
4.
Sci Adv ; 10(6): eadi4935, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335292

RESUMO

Prostate cancer (PC) develops in a microenvironment where the stromal cells modulate adjacent tumor growth and progression. Here, we demonstrated elevated levels of monoamine oxidase B (MAOB), a mitochondrial enzyme that degrades biogenic and dietary monoamines, in human PC stroma, which was associated with poor clinical outcomes of PC patients. Knockdown or overexpression of MAOB in human prostate stromal fibroblasts indicated that MAOB promotes cocultured PC cell proliferation, migration, and invasion and co-inoculated prostate tumor growth in mice. Mechanistically, MAOB induces a reactive stroma with activated marker expression, increased extracellular matrix remodeling, and acquisition of a protumorigenic phenotype through enhanced production of reactive oxygen species. Moreover, MAOB transcriptionally activates CXCL12 through Twist1 synergizing with TGFß1-dependent Smads in prostate stroma, which stimulates tumor-expressed CXCR4-Src/JNK signaling in a paracrine manner. Pharmacological inhibition of stromal MAOB restricted PC xenograft growth in mice. Collectively, these findings characterize the contribution of MAOB to PC and suggest MAOB as a potential stroma-based therapeutic target.


Assuntos
Monoaminoxidase , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Monoaminoxidase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais , Microambiente Tumoral
5.
Mol Cancer Res ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345532

RESUMO

Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) which has neuroendocrine (NE)-like features. In this work, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. We compared 15 NE versus 33 AdCa samples, that included six different PDX tumors for each group in biological replicates and identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of concordance from PDX tumor matched protein and mRNA revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa. Implications: Overall, our study highlights the importance of protein-based identification when compared to RNA and provides a rich resource of new and feasible targets for clinical assay development and in understanding the underlying biology of these tumors.

6.
Cell Rep Med ; 5(2): 101381, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244540

RESUMO

Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Glicoproteínas de Membrana
7.
Cell Rep Med ; 5(2): 101388, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262412

RESUMO

Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel. Genetic and pharmacological inactivation of CHRM1 restores the efficacy of docetaxel in resistant cells. Mechanistically, CHRM1, via its first and third extracellular loops, interacts with the SEMA domain of cMET and forms a heteroreceptor complex with cMET, stimulating a downstream mitogen-activated protein polykinase program to confer docetaxel resistance. Dicyclomine, a clinically available CHRM1-selective antagonist, reverts resistance and restricts the growth of multiple docetaxel-resistant CRPC cell lines and patient-derived xenografts. Our study reveals a CHRM1-dictated mechanism for docetaxel resistance and identifies a CHRM1-targeted combinatorial strategy for overcoming docetaxel resistance in PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptor Muscarínico M1 , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Receptor Muscarínico M1/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Colinérgicos/uso terapêutico
8.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260576

RESUMO

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples. Notably, although ARv7 expression in VCaP cells increased rapidly in response to ENZ, there was a long lag before it gained chromatin binding and transcriptional activity. This lag was associated with an increase in chromatin accessibility, with the AR and nuclear factor I (NFI) motifs being most enriched at these more accessible sites. Moreover, the transcriptional effects of combined NFIB and NFIX knockdown versus ARv7 knockdown were highly correlated. These findings indicate that ARv7 can drive the AR program, but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.

9.
Cancer Discov ; 14(3): 424-445, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197680

RESUMO

Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n = 222 plasma samples) and qualified it achieving an AUC > 0.93 for detecting pathology-confirmed CRPC-NE (n = 136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification. SIGNIFICANCE: Neuroendocrine prostate cancer is an aggressive subtype of treatment-resistant prostate cancer. Early detection is important, but the diagnosis currently relies on metastatic biopsy. We describe the development and validation of a plasma cell-free DNA targeted methylation panel that can quantify tumor fraction and identify patients with neuroendocrine prostate cancer noninvasively. This article is featured in Selected Articles from This Issue, p. 384.


Assuntos
Ácidos Nucleicos Livres , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Metilação de DNA , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Neoplasias de Próstata Resistentes à Castração/genética , Biópsia , Ácidos Nucleicos Livres/genética
10.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225213

RESUMO

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3 , Androgênios , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
11.
J Pathol ; 262(1): 105-120, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850574

RESUMO

HOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer. To this end, we validated a HOXB13 antibody using genetic controls and investigated HOXB13 protein expression in murine and human developing prostates, localized prostate cancers, and metastatic castration-resistant prostate cancers. We observed that HOXB13 expression increases during later stages of murine prostate development. All localized prostate cancers showed HOXB13 protein expression. Interestingly, lower HOXB13 expression levels were observed in higher-grade tumors, although no significant association between HOXB13 expression and recurrence or disease-specific survival was found. In advanced metastatic prostate cancers, HOXB13 expression was retained in the majority of tumors. While we observed lower levels of HOXB13 protein and mRNA levels in tumors with evidence of lineage plasticity, 84% of androgen receptor-negative castration-resistant prostate cancers and neuroendocrine prostate cancers (NEPCs) retained detectable levels of HOXB13. Notably, the reduced expression observed in NEPCs was associated with a gain of HOXB13 gene body CpG methylation. In comparison to the commonly used prostate lineage marker NKX3.1, HOXB13 showed greater sensitivity in detecting advanced metastatic prostate cancers. Additionally, in a cohort of 837 patients, 383 with prostatic and 454 with non-prostatic tumors, we found that HOXB13 immunohistochemistry had a 97% sensitivity and 99% specificity for prostatic origin. Taken together, our studies provide valuable insight into the expression pattern of HOXB13 during prostate development and cancer progression. Furthermore, our findings support the utility of HOXB13 as a diagnostic biomarker for prostate cancer, particularly to confirm the prostatic origin of advanced metastatic castration-resistant tumors. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reino Unido
12.
Prostate ; 84(1): 100-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37796107

RESUMO

BACKGROUND: Androgen receptor (AR) pathway inhibition remains the cornerstone for prostate cancer therapies. However, castration-resistant prostate cancer (CRPC) tumors can resist AR signaling inhibitors through AR amplification and AR splice variants in AR-positive CRPC (ARPC), and conversion to AR-null phenotypes, such as double-negative prostate cancer (DNPC) and small cell or neuroendocrine prostate cancer (SCNPC). We have shown previously that DNPC can bypass AR-dependence through fibroblast growth factor receptor (FGFR) signaling. However, the role of the FGFR pathway in other CRPC phenotypes has not been elucidated. METHODS: RNA-Seq analysis was conducted on patient metastases, LuCaP patient-derived xenograft (PDX) models, and CRPC cell lines. Cell lines (C4-2B, VCaP, and 22Rv1) and ex vivo LuCaP PDX tumor cells were treated with enzalutamide (ENZA) and FGFR inhibitors (FGFRi) alone or in combination and sensitivity was determined using cell viability assays. In vivo efficacy of FGFRi in ARPC, DNPC, and SCNPC were evaluated using PDX models. RESULTS: RNA-Seq analysis of FGFR signaling in metastatic specimens, LuCaP PDX models, and CRPC cell lines revealed significant FGF pathway activation in AR-low PC (ARLPC), DNPC, and SCNPC tumors. In vitro/ex vivo analysis of erdafitinib and CH5183284 demonstrated robust and moderate growth suppression of ARPC, respectively. In vivo studies using four ARPC PDX models showed that combination ENZA and CH5183284 significantly suppressed tumor growth. Additional in vivo studies using four ARPC PDX models revealed that erdafitinib monotherapy was as effective as ENZA in suppressing tumor growth, and there was limited combination benefit. Furthermore, two of three DNPC models and two of four SCNPC models responded to CH5183284 monotherapy, suggesting FGFRi responses were model dependent. RNA-Seq and gene set enrichment analysis of end-of-study ARPC tumors treated with FGFRi displayed decreased expression of E2F and MYC target genes and suppressed G2M checkpoint genes, whereas end-of-study SCNPC tumors had heterogeneous transcriptional responses. CONCLUSIONS: Although FGFRi treatments suppressed tumor growth across CRPC phenotypes, our analyses did not identify a single pathway or biomarker that would identify tumor response to FGFRi. This is very likely due to the array of FGFR1-4 expression and tumor phenotypes present in CRPC. Nevertheless, our data nominate the FGFR pathway as a clinically actionable target that promotes tumor growth in diverse phenotypes of treatment-refractory metastatic CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Transdução de Sinais , Linhagem Celular Tumoral , Nitrilas/farmacologia
13.
Nat Cell Biol ; 25(12): 1821-1832, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049604

RESUMO

Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Próstata , Masculino , Humanos , Próstata/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/metabolismo , Lactatos/metabolismo
14.
Matrix Biol ; 124: 49-62, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956856

RESUMO

Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVß3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVß3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo. Our group has recently identified a novel αVß3 integrin binding partner, NgR2, responsible for regulating the expression of neuroendocrine markers and for inducing neuroendocrine differentiation in prostate cancer cells. Through in vitro functional assays, we here demonstrate that NgR2 is crucial in promoting cell adhesion to αVß3 ligands. Moreover, we describe for the first time co-fractionation of αVß3 integrin and NgR2 in small extracellular vesicles derived from metastatic prostate cancer patients' plasma. These prostate cancer patient-derived small extracellular vesicles have a functional impact on human monocytes, increasing their adhesion to fibronectin. The monocytes incubated with small extracellular vesicles do not show an associated change in conventional polarization marker expression and appear to be in an early stage that may be defined as "adhesion competent". Overall, these findings allow us to better understand integrin-directed signaling and cell-cell communication during cancer progression. Furthermore, our results pave the way for new diagnostic and therapeutic perspectives for patients affected by neuroendocrine prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios , Transdução de Sinais , Anticorpos Monoclonais , Integrinas , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Linhagem Celular Tumoral
15.
Cancer Cell ; 41(12): 2066-2082.e9, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995683

RESUMO

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.


Assuntos
Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Células Pequenas/genética , Fatores de Transcrição/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdiferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/genética
16.
Cancer Res Commun ; 3(11): 2358-2374, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823778

RESUMO

Castration-resistant prostate cancer (CRPC) consists of multiple phenotypic subtypes including androgen receptor (AR)-active prostate cancer (ARPC) and neuroendocrine prostate cancer (NEPC). Tumor cells with these phenotypes can coexist between metastases within a patient and within an individual tumor. Treatments that are effective across CRPC subtypes are currently lacking. Histone deacetylation is crucial for the regulation of chromatin structure and maintenance of cancer cell state and activation of the PI3K/AKT/mTOR signaling cascade is a tumor growth-promoting pathway. We therefore investigated combined targeting of histone deacetylase (HDAC) and PI3K using a rationally designed dual inhibitor, fimepinostat, in CRPC subtypes in vitro and in vivo. Dual HDAC1/2 and PI3K/AKT pathway inhibition by fimepinostat led to robust tumor growth inhibition in both ARPC and NEPC models including cell line- and patient-derived xenografts. HDAC1/2 inhibition combined with PI3K/AKT inhibition was more effective than targeting each pathway alone, producing growth inhibitory effects through cell-cycle inhibition and apoptosis. Molecular profiling revealed on-target effects of combined HDAC1/2 and PI3K/AKT inhibition independent of tumor phenotype. Fimepinostat therapy was also associated with the suppression of lineage transcription factors including AR in ARPC and Achaete-scute homolog 1 (ASCL1) in NEPC. Together, these results indicate that fimepinostat represents a novel therapeutic that may be effective against both ARPC and NEPC through CRPC subtype-dependent and -independent mechanisms. SIGNIFICANCE: CRPC is a heterogeneous disease constituting multiple phenotypic subtypes that often co-occur within tumors or across metastases in patients. Existing targeted therapies for CRPC do not take this into account. Here we show that fimepinostat, a dual HDAC1/2 and PI3K/AKT inhibitor investigated clinically in other cancer types but not prostate cancer, may overcome this heterogeneity by effectively inhibiting both ARPC and NEPC subtypes of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Histona Desacetilases/genética , Fenótipo , Castração
17.
Br J Cancer ; 129(11): 1818-1828, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37798372

RESUMO

BACKGROUND: Neuroendocrine phenotype is commonly associated with therapy resistance and poor prognoses in small-cell neuroendocrine cancers (SCNCs), such as neuroendocrine prostate cancer (NEPC) and small-cell lung cancer (SCLC). Expression levels of current neuroendocrine markers exhibit high case-by-case variability, so multiple markers are used in combination to identify SCNCs. Here, we report that ACAA2 is elevated in SCNCs and is a potential molecular indicator for SCNCs. METHODS: ACAA2 expressions in tumour xenografts, tissue microarrays (TMAs), and patient tissues from prostate and lung cancers were analysed via immunohistochemistry. ACAA2 mRNA levels in lung and prostate cancer (PC) patients were assessed in published datasets. RESULTS: ACAA2 protein and mRNA levels were elevated in SCNCs relative to non-SCNCs. Medium/high ACAA2 intensity was observed in 78% of NEPC PDXs samples (N = 27) relative to 33% of adeno-CRPC (N = 86), 2% of localised PC (N = 50), and 0% of benign prostate specimens (N = 101). ACAA2 was also elevated in lung cancer patient tissues with neuroendocrine phenotype. 83% of lung carcinoid tissues (N = 12) and 90% of SCLC tissues (N = 10) exhibited medium/high intensity relative to 40% of lung adenocarcinoma (N = 15). CONCLUSION: ACAA2 expression is elevated in aggressive SCNCs such as NEPC and SCLC, suggesting it is a potential molecular indicator for SCNCs.


Assuntos
Carcinoma Neuroendócrino , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Carcinoma Neuroendócrino/patologia , Carcinoma de Células Pequenas/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Fenótipo , Neoplasias da Próstata/patologia , RNA Mensageiro , Carcinoma de Pequenas Células do Pulmão/genética
18.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37725435

RESUMO

Antibody-drug conjugates (ADCs) are a promising targeted cancer therapy; however, patient selection based solely on target antigen expression without consideration for cytotoxic payload vulnerabilities has plateaued clinical benefits. Biomarkers to capture patients who might benefit from specific ADCs have not been systematically determined for any cancer. We present a comprehensive therapeutic and biomarker analysis of a B7H3-ADC with pyrrolobenzodiazepine(PBD) payload in 26 treatment-resistant, metastatic prostate cancer (mPC) models. B7H3 is a tumor-specific surface protein widely expressed in mPC, and PBD is a DNA cross-linking agent. B7H3 expression was necessary but not sufficient for B7H3-PBD-ADC responsiveness. RB1 deficiency and/or replication stress, characteristics of poor prognosis, and conferred sensitivity were associated with complete tumor regression in both neuroendocrine (NEPC) and androgen receptor positive (ARPC) prostate cancer models, even with low B7H3 levels. Non-ARPC models, which are currently lacking efficacious treatment, demonstrated the highest replication stress and were most sensitive to treatment. In RB1 WT ARPC tumors, SLFN11 expression or select DNA repair mutations in SLFN11 nonexpressors governed response. Importantly, WT TP53 predicted nonresponsiveness (7 of 8 models). Overall, biomarker-focused selection of models led to high efficacy of in vivo treatment. These data enable a paradigm shift to biomarker-driven trial designs for maximizing clinical benefit of ADC therapies.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias da Próstata , Masculino , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Antineoplásicos/uso terapêutico , Proteínas Nucleares
19.
NAR Cancer ; 5(3): zcad045, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37636316

RESUMO

Androgen receptor (AR) inhibition is standard of care for advanced prostate cancer (PC). However, efficacy is limited by progression to castration-resistant PC (CRPC), usually due to AR re-activation via mechanisms that include AR amplification and structural rearrangement. These two classes of AR alterations often co-occur in CRPC tumors, but it is unclear whether this reflects intercellular or intracellular heterogeneity of AR. Resolving this is important for developing new therapies and predictive biomarkers. Here, we analyzed 41 CRPC tumors and 6 patient-derived xenografts (PDXs) using linked-read DNA-sequencing, and identified 7 tumors that developed complex, multiply-rearranged AR gene structures in conjunction with very high AR copy number. Analysis of PDX models by optical genome mapping and fluorescence in situ hybridization showed that AR residing on extrachromosomal DNA (ecDNA) was an underlying mechanism, and was associated with elevated levels and diversity of AR expression. This study identifies co-evolution of AR gene copy number and structural complexity via ecDNA as a mechanism associated with endocrine therapy resistance.

20.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577653

RESUMO

Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) which has neuroendocrine (NE)-like features. To this end, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. When we compared 15 NE versus 33 AdCa PDX samples, we identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of protein and RNA concordance from these tumors revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...